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Abstract  

This document provides a brief high-level introduction to probabilistic programming 
and Microsoft® Infer.NET. 

For more detailed information and a walkthrough of sample applications, see 
“Infer.NET 101,” listed in Resources at the end of this paper.  
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Overview 

Computers are rigorously logical but the real world is not, a simple fact that can pose 
some real challenges for programmers. For example, suppose you must represent 
what a user scribbles on a touch screen as a word. People usually aren’t very careful 
or consistent about their handwriting, so does that scribble correspond to “hill”, or is 
it “bull” or maybe even “hello”? The user knows what they wrote, but from the 
application’s perspective, the value of the correct word is fundamentally uncertain. 
It’s not completely uncertain though; “hull” is more likely than “gall” and you can 
completely rule out words like “train” or “helicopter.” 

How do you represent such uncertainty in a program, though? Conventional variables 
such as bool or int must have well-defined values. A scribble needs a variable—call it 
someScribble—that represents any of several possible words; you aren’t sure which. 
However, that variable must represent uncertainty in a way that incorporates your 
understanding of the probability that each of the possible words might be the right 
one. 

Probabilistic programming is designed to handle such uncertainty. It is based on 
random variables, which are extensions of standard types that can represent 
uncertain values. Each random variable represents a set or range of possible values, 
and has an associated distribution that assigns a probability to each possible value. 
The distribution quantitatively represents your understanding of the variable’s 
possible values, and allows you to use statistical analysis to understand the variable’s 
behaviour. 

So someScribble is now represented by a random variable. How do you obtain 
someScribble’s distribution—the probabilities for each of its possible words? From 
the user’s perspective, there is a cause-effect relationship between a word and the 
associated scribble. With probabilistic programming, you can construct a probabilistic 
model that defines how users transform words to scribbles. This model recognizes, 
among other things, that the same word can lead to different scribbles and that 
different words can lead to similar scribbles, and defines the associated probabilities. 

How do you reason backwards from a particular scribble to the set of possible words 
and their probabilities? Probabilistic programming is based on a statistical 
methodology known as Bayesian inference. It allows you to reason backwards from 
an observation—the scribble—to its origin—the possible words and their 
probabilities—based on a probabilistic model. 

A model usually has a set of adjustable parameters that govern its behaviour. How do 
you determine the correct parameter settings? You could just assign parameter 
values based on your general understanding of handwriting, which might work 
reasonably well. However, everybody writes a bit differently, so the possible words 
associated with someScribble and their probabilities will vary somewhat from user to 
user. To fine-tune the parameters for an individual user’s particular writing style, a 
probabilistic program can treat the model parameters themselves as random 
variables and learn the real parameter values based on user interaction.  
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The results look OK, but how do you know that you aren’t missing something. Would 
a more sophisticated model with more variables work even better? If you add enough 
variables to a model, you can fit almost anything. However, you generally reach a 
point of diminishing returns; at some point additional complexity starts reducing the 
model’s quality. You need an Occam’s razor to find a balance between accuracy and 
complexity. That “razor” is an integral part of Bayesian inference, which includes a 
robust way to assess model quality called evidence that you can use to pick the best 
model. 

This might sound good in principle, but it’s all hand waving so far. How do you 
actually go about implementing models and inferring probabilities? There are usually 
multiple ways to address probabilistic problems. However, probabilistic programming 
provides a natural integrated way to address this class of problems. You can 
implement probabilistic programs from scratch, but it can be challenging. The 
Microsoft® Infer.NET framework greatly simplifies the process, by providing: 

 A modelling API, which simplifies the mechanics of constructing probabilistic 
models. 

Even complex models can often be expressed with only a few lines of code. 

 An inference engine, which combines that model with your observations, and 
handles the complex mathematics of inferring probabilities for the specified 
variable’s possible values. 

 

This document provides a brief high-level introduction to probabilistic programming 
and Infer.NET. If you want to go further, a companion document, “Infer.NET 101,” 
takes you through the basics of Infer.NET programming, based on a set of simple 
applications.  

What Probabilistic Programming Can Do 

This section illustrates the value of probabilistic programming by briefly describing 
three examples of working applications. These examples don’t cover the complete 
range of possibilities, but they should give you a better sense of how probabilistic 
programming can help you implement new and better applications. 

Select Conference Papers 

There are usually more papers submitted to conferences than can possibly be 
accepted for presentation. Conference organizing committees therefore typically 
have each paper reviewed by several scientists, and use those reviews to select the 
top papers. However, there are usually too many papers for a single group of 
reviewers to review every one, so conferences typically have a relatively large group 
of reviewers, each of whom reviews a subset of the submitted papers. 

When the reviews come back, the committee is faced with a problem of how to 
calibrate review scores. Given reviews for two papers—each of which was reviewed 
by a different group of scientists who do not necessarily have the same standards or 
expertise—how do you compare the scores to determine which paper is better? In 
addition, how do you do so efficiently, so the organizing committee can complete its 
work in a reasonable amount of time? 
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Researchers from Microsoft Research, Cambridge developed a Bayesian model to 
calibrate reviews for the SIGKDD’09 conference’s research track. The model separates 
the individual reviewer’s standards and expertise from the papers’ inherent quality by 
using the fact that each paper has several reviewers, each of whom reviews several 
different papers. For more details, see “Novel Tools to Streamline the Conference 
Review Process” in “Resources” at the end of this document. 

Rank Players in Multi-Player Games 

Multi-player games such as those hosted by the Xbox LIVE ® video game service are 
more interesting if all the players in a particular game session have comparable skill. 
However, achieving this goal poses some challenges: 

 A new player’s skill level is unknown. 

 A player’s skill usually improves with time. 

 A player’s performance varies from game to game, even against the same 
opponents. 

 

A good ranking system needs to be able to quickly learn a new player’s skill level, and 
then adjust that ranking as the player continues to play and improve. 

The TrueSkill® matchmaking system ranks Xbox LIVE gamers by starting with a 
standard distribution for new players, and then updating it as the player wins or loses 
games. TrueSkill can converge on a stable ranking in as few as three games, 
depending on the number of players. TrueSkill also associates an uncertainty with 
each level, which provides a more robust way to create compatible groups of players 
than simply using a skill value. 

For more information, see “TrueSkill Ranking System” in “Resources and References.” 
For a discussion of how to implement such an application with Infer.NET, see “How to 
represent large irregular graphs,” in “Resources.” 

Predict Click-Through Rates 

Sponsored search is a key revenue generator for online search engines such as Bing®. 
The search engines use a keyword auction to allocate space. The auction is based on 
a pay-per-click model, where advertisers pay only if users select their item from 
sponsored search results and click-through to the corresponding Web page. 

To optimize user experience, search engine revenue, and advertiser revenue, the 
search engine needs to display the results that the user is most likely to click. To 
select and rank an optimal list of advertisers, the search engine must have an efficient 
and accurate way to predict the click-through rate for each advertiser. 

Researchers from Microsoft Research, Cambridge developed a Bayesian online 
learning algorithm—called adPredictor—to optimize sponsored search results for the 
Bing search engine. The algorithm is currently running in the Bing production 

environment, which must handle on the order of 1010-1011 advertising impressions 
per year. For details, see “Web-Scale Bayesian Click-Through Rate Prediction for 
Sponsored Search Advertising in Microsoft’s Bing Search Engine” in “Resources.” 
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How Probabilistic Programming Works 

The following “Whodunit” scenario provides a convenient way to illustrate 
probabilistic programming’s basic concepts and define some essential terminology 
and concepts. 

Whodunit 

You return to your country house after an evening of whist with your neighbour, only 
to discover that your houseguest has been foully murdered. You must discover the 
culprit. Initially, you know that: 

 There are two possible culprits: the butler and the cook. 

 There are three possible murder weapons: a butcher knife, a pistol, and a 
fireplace poker. 

 

Initially, the culprit and murder weapon are unknown. However, probabilistic 
reasoning and observations can help identify the likely culprit, and in the process 
provide an introduction to the basics of probabilistic programming. 

Suspects and Murder Weapons: Random Variables 

You need a variable to represent the culprit. One suspect is guilty and the other isn’t, 
so the obvious choice is a variable that can take either of two possible values. A bool 
type can represent two possible values. However, a bool type can be only true or 
false, and you can’t be certain about the variable’s actual value until the culprit 
confesses. You can, however, estimate the probability that each suspect is the culprit. 

What you need is a random variable, which essentially extends standard domain 
types such as bool or double to handle both deterministic and uncertain values. 

 A random variable has a set or range of possible values, which are drawn from 
the domain type. 

For example, the possible values of a bool random variable are true and false. 
The possible values of a double random variable are real numbers over a 
continuous range such as [0, 1] or [-∞, ∞]. 

 Each random variable has an associated probability distribution which specifies 
the probability of each possible value. 

For example, a bool random variable could have a 70% probability of being true, 
and a 30% probability of being false. 

 

The Whodunit scenario requires two random variables: 

 theCulprit: A random variable with two possible values: theButler and theCook. 

 theMurderWeapon: A random variable with three possible values: thePistol, 
theKnife, and thePoker. 

The Likely Culprit: Probability Distributions 

Even though you can’t definitively say who committed the murder at this point, you 
can estimate the probability that each suspect is guilty. Every random variable is 
associated with a function known as a probability distribution—usually shortened to 
just “distribution”—that assigns a probability to each of the variable’s possible values. 
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The distributions associated with theCulprit and theMurderWeapon are known as 
Discrete distributions, which assign probabilities to an enumerable set of possible 
values. Because the actual value must be one of the possible values, the probabilities 
must sum to 100%.  

Getting Started: The Prior Distribution 

Probabilistic programming starts by defining an initial distribution for each random 
variable, which is called a prior distribution or sometimes prior belief. It is commonly 
shortened to just prior. A prior defines your understanding of a variable before you 
have made any observations. For theCulprit: 

 The butler is an upstanding fellow who has served the family faithfully for years. 

 The cook was hired recently, and there are rumours of an unsavoury past. 
 

From this information, you estimate the theCulprit prior to be: theButler = 20% and 
theCook = 80%. 

Investigate: Observations and the Posterior Distribution 

The prior is a useful starting point, but you can improve your understanding if you 
observe the actual value of one or more of the random variables in your model. At 
that point, the variable is no longer uncertain, which allows you to make a better 
estimate of the other variables’ distributions.  

For example, suppose that you know that the butler is more likely to have used the 
pistol, and the cook more likely to have used the knife or poker. After you receive the 
coroner’s report, you can infer a new theCulprit distribution, which incorporates the 
observation of theMurderWeapon into the theCulprit prior and improves your 
estimate of the probable culprit. If the murder weapon is the pistol, theButler 
increases and theCook decreases. 

An observation doesn’t supplant the prior—that information is still valid—but you 
can use the additional information to revise your prior belief so that it accurately 
reflects all available data. The new distribution is known as a posterior distribution, or 
just “posterior.” 

In fact, the distinction between prior and posterior can sometimes be somewhat 
blurred. A more general and useful way to look at priors and posteriors is: 

 A prior represents your understanding of the system before you make a 
particular set of observations. 

 The corresponding posterior represents your understanding of the system after 
you have made the observations. 

 

Suppose you come up with an additional observation: a new coroner’s report gives an 
estimate of when the murder was committed. Before you receive this second report, 
your understanding of the situation is represented by the posterior belief you had 
after reading the first coroner’s report. That posterior is therefore the logical choice 
for the new prior, which you can then use with the observed murder time to infer a 
second posterior. This type of inference is incremental in nature and is referred to as 
online learning. Alternatively you go back to the original prior belief, and reconsider 
all the evidence from scratch. 
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The more evidence you have, the less important your prior belief is. Conclusive 
evidence should override any prior belief, but if you don’t have much evidence to 
work with, prior belief counts for much more.  

Quantify the Problem: Conditional, Joint, and Marginal Distributions 

The preceding discussion makes some general arguments about how to infer the 
most likely culprit, but is a bit vague about actual numbers. This section quantifies the 
discussion. 

Conditional Distributions 

To infer a posterior, you must first construct a mathematical model for the murder 
scenario. You have already specified a prior for theCulprit. You also know that: 

 The butler keeps an old Webley from his Army days in a locked drawer but the 
cook does not own a pistol. 

The butler is much more likely to have used the pistol. 

 The cook has an ample supply of sharp butcher knives—and has forbidden the 
butler to set foot in the kitchen. 

The butler is less likely to have used the butcher knife. 

 The butler is much older than the cook, and getting a bit frail. 

The butler is less likely to have used a physically demanding weapon like the 
poker. 

 

The simplest way to start constructing a model is to estimate the probability that the 
suspects used each of the possible murder weapons. This is known as a conditional 
distribution, the distribution for theMurderWeapon, conditioned by a particular value 
for theCulprit. 

To simplify the discussion, we’ll simply specify the two distributions, as shown in 
Figure 1. 

 Pistol Knife Poker  

Cook 5% 65% 30% = 100% 

     

Butler 80% 10% 10% = 100% 

 

Figure 1. Whodunit conditional distributions 

Each suspect must use one of the possible weapons, so each conditional distribution 
sums to 100%. 

Joint Distributions 

You can use theCulprit prior and the conditional distributions from the previous 
section to construct a model for Whodunit, which is known as a joint distribution. A 
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joint distribution represents the probabilities of all possible combinations of the 
random variable’s possible values—the cook with the knife, the butler with the poker, 
and so on. It contains your complete understanding of the murder scene before you 
make any observations. 

Figure 2 shows the Whodunit joint distribution. 

 Pistol Knife Poker  

Cook 4% 52% 24%  

Butler 16% 2% 2%  

 

Figure 2. Whodunit joint distribution 

Each row contains the conditional probabilities from the previous section multiplied 
by the corresponding probabilities from the theCulprit prior, 80% for the theCook and 
20% for theButler. Because the combination of culprit and weapon must be one of 
these six possibilities, they sum to 100%. 

You can actually create joint distributions in a variety of ways. All of them produce 
the same numbers. The approach used in this document is basically cause-effect—the 
culprit selects the weapon and uses it commit the murder. 

 theCulprit is the variable that we are interested in—and that we want to infer a 
posterior for—so we define a prior for that variable. 

 theMurderWeapon is the variable that we can observe, so we define conditional 
distributions for that variable. 

 

Cause-effect is usually the simplest way to construct a probabilistic model even if you 
want to reason in the reverse direction, such as inferring the culprit based on 
knowledge of the murder weapon. 

Marginal Distributions 

You can use the joint distribution to ask a variety of questions. Suppose we wanted to 
know the probability that the pistol is the murder weapon. You can compute that 
from the joint distribution by summing the probability that the cook used the pistol 
and the probability that the butler used the pistol. You can do the same computation 
for the knife and the poker. The distribution that remains after you “sum out” all but 
one variable in the joint distribution is the remaining variable’s marginal 
distribution—or more commonly just marginal. 

Figure 3 shows the marginal for theMurderWeapon. Prior to receiving the coroner’s 
report, the most likely murder weapon appears to be the knife or the poker. 
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 Pistol Knife Poker  

Cook 4% 52% 24%  

Butler 16% 2% 2%  

 = 20% = 54% = 26%  

Figure 3. Marginal distribution for theMurderWeapon 

You can compute the marginal for theCulprit in the same way, which simply gives you 
back the prior probabilities that were specified earlier.  

 Pistol Knife Poker  

Cook 4% 52% 24% = 80% 

Butler 16% 2% 2% = 20% 

 

Figure 4. Marginal for theCulprit 

So far, these marginals basically tell you what you already know. They are more 
interesting after you make an observation and add some new information to the mix. 

Whodunit: Infer a Posterior 

When the coroner’s report arrives, you can use the observation of the murder 
weapon to infer a posterior for theCulprit, which should contain an improved 
estimate of the probable culprit. 

The posterior is a conditional marginal, the marginal for theCulprit, conditioned by 
the observation that the murder weapon is the pistol. In this simple case, you can 
obtain the posterior from the joint distribution table. 

The coroner’s report means that you can eliminate the knife and the poker from the 
grid. The remaining values for the pistol indicate the probability that each suspect is 
guilty. However, they are not a proper distribution; the numbers don’t add up to 1.0. 
To finish the computation, divide each value by the marginal for thePistol (0.20). This 
renormalizes the values and produces the posterior distribution to the right of the 
table, as shown in Figure 5. 
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Figure 5. Posterior for theCulprit 

The result isn’t completely certain, but it looks bad for the butler! 

In practice, models are usually much more complicated than the one used in this 
example, which in turn makes computing posteriors much more difficult. Applying 
probabilistic programming to “real world” scenarios requires a more sophisticated 
approach to both model construction and inference. 

What’s Next: A More Sophisticated Approach 

The joint distribution in the previous section is a very simple model, with only two 
variables and a small set of possible values. While the observation of the murder 
weapon strongly suggests that the butler is the likely culprit, there’s still a possibility 
that the cook is guilty. A more sophisticated model that could handle a wider range of 
observations might provide more certainty. However, computing posteriors for more 
sophisticated models is correspondingly more difficult. 

More Sophisticated Models 

You could perhaps handle the additional variables by expanding the joint distribution 
table in Figure 2. However, for more than two variables—or for variables with many 
possible values—tables rapidly become unmanageable. In addition, tables are useful 
only for discrete distributions. If you want to define a distribution for the time of the 
murder, it must represent a continuous range of values, which can’t be represented 
by a table at all. 

A more flexible and powerful approach is to create a conceptual model for the joint 
distribution in the form of a graph that represents the relationships between the 
system’s random variables. Figure 6 shows two examples, where (a) is the graph for 
Whodunit, and (b) extends that graph to handle additional random variables. 
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theCulprit

theMurderWeapon

theCulprit

theMurderWeapon

theMotive

theCorpse

theTime

theFingerprints

(a) (b)  

Figure 6. Graphical models 

The model represents the relationships between random variables, as follows: 

 Each box represents a random variable. 

 The arrows indicate cause-effect relationships between random variables. 

 The shaded boxes indicate the observable random variables. 

 The unshaded boxes indicate unobservable random variables that we would like 
to infer. 

 

For model (a), the model is: the culprit chooses a murder weapon. You observe the 
murder weapon, and use the model and observation to infer the likely culprit. Even 
though the model represents cause-effect—which is known as a generative model—
you can use it to reason in either direction. If you know the culprit, for example, you 
can use that observation to infer the most likely murder weapon. 

Model (b) is a more sophisticated model that incorporates additional random 
variables—the time of the murder, the state of the corpse, and so on—several of 
which are observable. You can use this model combined with observations of several 
random variables to compute posteriors, and perhaps either vindicate the butler or 
produce such overwhelming evidence that he is compelled to confess. 

More Sophisticated Inference 

With Whodunit, you could use simple arithmetic to infer a posterior from the table in 
Figure 2. That approach becomes more difficult as you add variables—especially if 
they have large numbers of possible values—and doesn’t work at all for variables that 
represent a continuous range of possible values. More realistic models require a 
more sophisticated way to infer posteriors. 

The conceptual models in Figure 6 are actually a graphical representation of the 
mathematical expression of the joint distribution. Probabilistic programs can use this 
expression and the mathematics of Bayesian inference to infer posteriors for 
arbitrarily complex graphs, including graphs that have variables with continuous 
distributions. You can even use the mathematical representation to directly define 
models that cannot be represented graphically. 
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How to Pick the Best Model 

Model (a) provided an estimate of the probable culprit, but probably not good 
enough to convict. A more complex and sophisticated model might be more 
convincing. However, adding more variables doesn’t necessarily produce a better 
model. There is usually a point of diminishing returns, beyond which additional 
complexity either adds nothing to the model, or actually makes it worse. 

For example, when you fit a polynomial to a set of data points, you can always get an 
exact fit by adding enough elements to the polynomial. However, a polynomial that 
exactly fits every data point typically swings wildly in between each point—a 
phenomenon known as overfitting—which might be accurate in some sense, but isn’t 
very useful. A polynomial with fewer elements can often fit the data almost as well, 
and provide a much more useful and realistic model. 

What you want is a happy medium: a model that fits the data reasonably well 
without being overly complex. In short, you need to apply Occam’s razor—the best 
model is the simplest one that adequately fits the data—to the possible models.  

For example, consider the two models in Figure 7. 

theCulprit

theMurderWeapon

theMotive

theCorpse

theTime

theFingerprints

(a)

theCulprit

theMurderWeapon

theMotive

theCorpse

theTime

theFingerprints

(b)

theAccomplice

 

Figure 7. Model comparison 

The two models account for the presence of fingerprints in different ways: 

 With model (a), the culprit leaves fingerprints at the crime scene. 

 With model (b), the culprit was careful about leaving fingerprints, but had an 
accomplice who was not. 

 

You usually can’t be certain which model is the optimal one. However, with 
probabilistic programming, you can treat evidence as a random variable and infer 
that variable’s distribution. The distribution gives you the probability that each model 
is optimal, and you can use that information to pick the best model. For example, if 
the evidence for model (b) has a probability of only 15%, an accomplice probably 
adds unnecessary complexity to the model. You can therefore stick with the simpler 
explanation: the butler did it. 
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Probabilistic Programming with Infer.NET 

Probabilistic programming is a general concept, and can be implemented in a variety 
of ways. What’s the advantage of using Infer.NET? In short, Infer.NET provides a 
straightforward way to represent graphical models in code, and includes an inference 
engine that handles the complex mathematics of inferring posteriors. 

This section describes Infer.NET’s features, and how they can help you quickly and 
easily implement robust probabilistic programs. 

Powerful and Flexible Model Construction 
Creating a good conceptual model can be difficult, and is outside the Infer.NET 
scope. However, the Infer.NET API modelling API makes converting a conceptual 
model into code a simple and straightforward task. The API can be used to 
implement a wide range of models—including standard models such as Bayes 
point machine, latent Dirichlet allocation, factor analysis, and principal 
component analysis—often with only a few lines of code. 

Scalable and Composable Models 
The Infer.NET modelling API is composable, so that you can implement complex 
conceptual models from simple building blocks. However, you don’t have to 
implement the entire model at once. For example, you can start with a simplified 
conceptual model, which captures the basic features. When you have worked the 
kinks out, you can scale up the model and the data set—in multiple stages if 
needed—until you have a fully-implemented model that can process real data 
sets. 

Infer.NET models can also be scaled up computationally. You can start with a 
small data set and scale it up to handle much larger amounts of data, including 
using parallelized computation.  

Built-in Inference Engine 
Computing posteriors is usually quite difficult, and requires a deep understanding 
of Bayesian inference and numerical analysis. Infer.NET includes an inference 
engine that handles this task for you. With Infer.NET, your application constructs 
a model, observes one or more variables, and then queries the inference engine 
for posteriors. The query requires only a single line of code. The inference engine 
does all the numerical heavy lifting—using any of several supported algorithms—
and returns the requested posterior.  

Separation of Model from Inference 
Probabilistic programs are often designed around a particular problem and 
implemented monolithically, with no clear distinction between the model and the 
inference algorithm. This approach has some practical drawbacks, including: 

 It is limited to relatively simple models. 

 It is difficult to change the model. 

 It is easy to introduce inconsistencies in the model. 

 It limits you to a particular inference algorithm. 
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Infer.NET maintains a clear distinction between model and inference. 

 The model encodes core prior knowledge. 

An Infer.NET model—even a complex one—is typically confined to a single 
relatively small block of code. The model is often encapsulated in a separate 
class, so that you can use the same model for different queries. A separate 
model is straightforward to understand and modify, and is much more 
resistant to inconsistencies. Any that do creep in will be caught by the 
inference engine.  

 The inference engine handles the computations. 

You can change the model without touching the inference engine, and you 
can change the inference algorithm without touching the model.  

 

Quantifies Uncertainty 
Bayesian inference doesn’t just give you a best-fitting result; it also quantifies the 
result’s uncertainty, which is very useful in interpreting the results. For example, 
a Bayesian handwriting recognition model doesn’t just give you the best-fitting 
word; it provides a list of possible words and their associated probabilities.  

Support for a Variety of Learning Models 
Bayesian inference—with its basic model of prior plus observations yield a 
posterior, which becomes the prior for the next observations—is naturally suited 
to online learning, and implementing online learning with Infer.NET is simple and 
straightforward. 

Infer.NET also simplifies the implementation of more sophisticated learning 
techniques, such as hierarchical models. Suppose, for example, that you have a 
model for a user interaction such as speech recognition. You want to provide new 
users with a reasonably functional “out-of-the-box” model, but then personalize 
that model for the individual user based on their interactions. You can use 
Infer.NET to train the out-of-box model, based on observations of a reasonably 
large population. You can then use the out-of-box model as the initial prior for a 
new user, and train the model further to personalize it for that particular user. 

Built-in Model Selection Criterion 
The ability to balance model complexity against fit is an inherent part of Bayesian 
inference, which supports a model-selection criterion called evidence. With 
Infer.NET, evidence-based model comparison is simple and straightforward to 
implement. You can also use evidence to implement hyperparameter learning, 
where a hyperparameter represents a quantity that cannot be learned directly 
from the model. 

Easy to use Different Data Sources 
With Infer.NET, you can easily use different data sources for the observed values 
of different variables. For example, you could combine data from click logs with 
direct queries to users to infer the basis for user preferences. 
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Resources 

This section contains links to additional information about Infer.NET, or related 
topics. 

Infer.NET 

Infer.NET 
http://infernet.azurewebsites.net/  

Infer.NET 101 
http://infernet.azurewebsites.net/InferNet101.pdf  

Infer.NET: Building Software with Intelligence (PDC presentation) 
http://microsoftpdc.com/Sessions/VTL03 

Infer.NET User Guide 
http://infernet.azurewebsites.net/docs/default.aspx  

General References 

Bayesian inference 
http://en.wikipedia.org/wiki/Bayesian_inference 

Information Theory, Inference, and Learning Algorithms 
http://www.inference.phy.cam.ac.uk/mackay/itila/book.html 

Novel Tools To Streamline the Conference Review Process: Experiences from 
SIGKDD’09 

http://research.microsoft.com/pubs/122784/ReviewerCalibration.pdf 

Pattern Recognition and Machine Learning 
http://research.microsoft.com/PRML/ 

TrueSkill Ranking System 
http://research.microsoft.com/trueskill/ 

Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search 
Advertising in Microsoft’s Bing Search Engine 

http://research.microsoft.com/apps/pubs/default.aspx?id=122779 

http://infernet.azurewebsites.net/
http://research.microsoft.com/infernet/docs/InferNet101.pdf
http://microsoftpdc.com/Sessions/VTL03
http://infernet.azurewebsites.net/docs/default.aspx
http://en.wikipedia.org/wiki/Bayesian_inference
http://www.inference.phy.cam.ac.uk/mackay/itila/book.html
http://research.microsoft.com/pubs/122784/ReviewerCalibration.pdf
http://research.microsoft.com/en-us/um/people/cmbishop/PRML/
http://research.microsoft.com/trueskill/
http://research.microsoft.com/apps/pubs/default.aspx?id=122779

